Glycans play a fundamental role in several biological processes, such as cell–cell adhesion, signaling, and recognition. Similarly, abnormal glycosylation is involved in many pathological processes, among which include tumor growth and progression. Several highly glycosylated proteins found in blood are currently used in clinical practice as cancer biomarkers (e.g., CA125, PSA, and CA19-9). The development of novel non-invasive diagnostic procedures would greatly simplify the screening and discovery of pathologies at an early stage, thus also allowing for simpler treatment and a higher success rate. In this observational study carried out on 68 subjects diagnosed with either breast or lung cancer and 34 healthy volunteers, we hydrolyzed the glycoproteins in saliva and quantified the obtained free sugars (fucose, mannose, galactose, glucosamine, and galactosamine) by using high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD). The glycosidic profiles were compared by using multivariate statistical analysis, showing differential glycosylation patterns among the three categories. Furthermore, Receiver Operating Characteristics (ROC) analysis allowed obtaining a reliable and minimally invasive protocol able to discriminate between healthy and pathological subjects.