Pharmaceuticals (Jun 2022)

Antioxidant Activity of Pharmaceuticals: Predictive QSAR Modeling for Potential Therapeutic Strategy

  • Mario-Livio Jeličić,
  • Jelena Kovačić,
  • Matija Cvetnić,
  • Ana Mornar,
  • Daniela Amidžić Klarić

DOI
https://doi.org/10.3390/ph15070791
Journal volume & issue
Vol. 15, no. 7
p. 791

Abstract

Read online

Since oxidative stress has been linked to several pathological conditions and diseases, drugs with additional antioxidant activity can be beneficial in the treatment of these diseases. Therefore, this study takes a new look at the antioxidant activity of frequently prescribed drugs using the HPLC-DPPH method. The antioxidative activity expressed as the TEAC value of 82 drugs was successfully determined and is discussed in this work. Using the obtained values, the QSAR model was developed to predict the TEAC based on the selected molecular descriptors. The results of QSAR modeling showed that four- and seven-variable models had the best potential for TEAC prediction. Looking at the statistical parameters of each model, the four-variable model was superior to seven-variable. The final model showed good predicting power (r = 0.927) considering the selected descriptors, implying that it can be used as a fast and economically acceptable evaluation of antioxidative activity. The advantage of such model is its ability to predict the antioxidative activity of a drug regardless of its structural diversity or therapeutic classification.

Keywords