Jurnal MIPA (Nov 2014)

ESENSI NILAI DAN VEKTOR EIGEN DARI SUATU OPERATOR PADA RUANG HILBERT KLASIK

  • Wuryanto -

Journal volume & issue
Vol. 37, no. 1

Abstract

Read online

Suatu transformasi linear T dari V ke W adalah fungsi dari ruang linear V atas F ke ruang linear W atas F dengan sifat untuk setiap vektor dan skalar berlaku V Ruang Hilbert atas lapangan kompleks C senantiasa yang dimaksudkan adalah ruang hasilkali dalam lengkap dalam arti V adalah ruang linear atas C yang dilengkapi dengan suatu fungsi dari ke C dan memenuhi semua sifat hasilkali dalam, dan kelengkapan V ditunjukkan dalam kapasitas V sebagai ruang metrik dengan sifat setiap barisan Cauchy di V konvergen ke suatu titik di V. Metrik untuk V dibangun melalui suatu norm pada V yang didefinisikan . Selanjutnya yang dimaksud dengan operator adalah suatu transformasi linear kontinu dari ruang Hilbert V ke ruang hibert W. Dengan demikian jika dikatakan T suatu operator pada V, senantiasa yang dimaksudkan adalah V ruang Hilbert atas C dan T adalah suatu transformasi linear dari V ke V. Notasi adalah koleksi semua operator dari V ke W . Esensi nilai eigen dan vektor eigen berkaitan langsung dengan sifat mendasar dari nilai dan vektor eigen dari suatu operator pada ruang hilbert klasik. A linear transformation of T from V to W is function from linear space V to F to linear space W to F with the properties of every vector and scalar applies V . A Hilbert Space V over a complex field C is always meant the complete inner product space where V is a linear space to C with a function of from to C and satisfies all properties of inner product space, and the completeness of V is shown by the capacity of V as the metric space with the properties of Cauchy sequence in a convergent V to any point in V. The metrics for V is built through a norm at V which is defined as . . Further, what is meant with an operator is a continuous linear transformation of Hilbert Space V to Hibert Space W. Therefore, if T is said to be an operator on V, then it is always said that Hilbert Space V is on C and T is a linear transformation from V to V. The notation is the collection of all operators from V to W. The essentials of eigen values and eigen vectors are related directly with the basic properties of eigen value and vector of an operator on a classical Hilbert Space.

Keywords