PLoS ONE (Jan 2023)
Involvement of circulating soluble HLA-G after liver transplantation in the low immunogenicity of hepatic allograft.
Abstract
Graft rejection is a critical risk in solid-organ transplantation. To decrease such risk, an understanding of the factors involved in low immunogenicity of liver allografts could potentially make it possible to transfer this tolerogenic property to other transplanted organs. HLA-G, a natural physiological molecule belonging to the Human Leukocyte Antigen class (HLA) Ib family that induces tolerance, is associated with fewer rejections in solid-organ transplantation. In contrast to HLA-G, HLA antigen incompatibilities between donor and recipient can lead to rejection, except in liver transplantation. We compared HLA-G plasma levels and the presence of anti-HLA antibodies before and after LT to understand the low immunogenicity of the liver. We conducted a large prospective study that included 118 patients on HLA-G plasma levels during a 12-month follow-up and compared them to the status of anti-HLA antibodies. HLA-G plasma levels were evaluated by ELISA at seven defined pre- and post-LT time points. HLA-G plasma levels were stable over time pre-LT and were not associated with patient characteristics. The level increased until the third month post-LT, before decreasing to a level comparable to that of the pre-LT period at one year of follow-up. Such evolution was independent of biological markers and immunosuppressive treatment, except with glucocorticoids. An HLA-G plasma level ≤ 50 ng/ml on day 8 after LT was significantly associated with a higher rejection risk. We also observed a higher percentage of rejection in the presence of donor specific anti-HLA antibodies (DSA) and an association between the increase in HLA-G plasma levels at three months and the absence of DSA. The low immunogenicity of liver allografts could be related to early elevated levels of HLA-G, which lead, in turn, to a decrease in anti-HLA antibodies, opening potential new therapeutic strategies using synthetic HLA-G proteins.