Electrical engineering & Electromechanics (Feb 2024)

An adaptive controller for power quality control in high speed railway with electric locomotives with asynchronous traction motors

  • A. Chaib Ras,
  • R. Bouzerara,
  • H. Bouzeria

DOI
https://doi.org/10.20998/2074-272X.2024.2.04
Journal volume & issue
Vol. 2024, no. 2
pp. 23 – 30

Abstract

Read online

Introduction. Power quality in an electric railway system pertains to the dependability, consistency, and purity of the electrical power provided to different components and systems within the railway infrastructure. Assessing power quality offers considerable opportunities to improve the efficiency of railway systems. Problem. Managing the flow of active and reactive power effectively, decreasing harmonic currents, and addressing the negative sequence component are all critical parts of improving power quality for electrified rail systems. As a result, flexible AC transmission systems are the major means of minimizing or decreasing these difficulties. Purpose. This study describes a half-bridge reactive power railway power conditioner (HB-RPC) with a novel Ynev balancing transformer. HB-RPC is made up of four switching devices and two DC capacitors and the compensator’s stability is determined by the operating voltage of the DC-link. Any variations or imbalances in the DC voltage might cause the compensator to operate in an unstable manner. Novelty. Of a novel balanced transformer with HB-RPC in a high-speed railway system with two scenarios. Methods. The study utilized MATLAB/Simulink software for simulation purposes. The system integrates a fuzzy logic controller (FLC) and a PI controller to optimize DC voltage, ensuring its constancy and balance, with the objective of improving the overall stability of the system. Results. The simulation outcomes illustrate the efficacy of the control approach. Through a comparison of results between scenarios (two and four trains) with the PI-based-HB-RPC and the FLC-based-HB-RPC, the system exhibits enhanced stability for the proposed railway system when employing the FLC-based-HB-RPC, compared to a controller based on PI. Practical value. The proposed configuration elucidates its role in enhancing both the dynamic performance of the system and the power quality of the three-phase rail traction chain.

Keywords