Entropy (Apr 2023)

A Note on Cherry-Picking in Meta-Analyses

  • Daisuke Yoneoka,
  • Bastian Rieck

DOI
https://doi.org/10.3390/e25040691
Journal volume & issue
Vol. 25, no. 4
p. 691

Abstract

Read online

We study selection bias in meta-analyses by assuming the presence of researchers (meta-analysts) who intentionally or unintentionally cherry-pick a subset of studies by defining arbitrary inclusion and/or exclusion criteria that will lead to their desired results. When the number of studies is sufficiently large, we theoretically show that a meta-analysts might falsely obtain (non)significant overall treatment effects, regardless of the actual effectiveness of a treatment. We analyze all theoretical findings based on extensive simulation experiments and practical clinical examples. Numerical evaluations demonstrate that the standard method for meta-analyses has the potential to be cherry-picked.

Keywords