Semiconductor Physics, Quantum Electronics & Optoelectronics (Dec 2017)

Macroscopic versus microscopic photovoltaic response of heterojunctions based on mechanochemically prepared nanopowders of kesterite and n-type semiconductors

  • O.P. Dimitriev,
  • D.O. Grynko,
  • A.M. Fedoryak,
  • T.P. Doroshenko,
  • M. Kratzer,
  • C. Teichert,
  • Yu.V. Noskov,
  • N.A. Ogurtsov,
  • A.A. Pud,
  • P. Balaz,
  • M. Balaz,
  • M. Tesinsky

DOI
https://doi.org/10.15407/spqeo20.04.418
Journal volume & issue
Vol. 20, no. 4
pp. 418 – 423

Abstract

Read online

Mechanochemically prepared nanopowder of selenium-free kesterite Cu2ZnSnS4 (CZTS) in combination with n-type semiconductors, i.e., CdS, ZnO and TiO2, was tested in planar and bulk-heterojunction solar cells. The samples have been studied by macroscopic current-voltage (I-V) measurements and Kelvin-probe atomic-force microscopy (KPFM). KPFM images taken under light illumination showed the distribution of the potential across the surface, with negative potential on the n-type semiconductor domains and positive potential on the CZTS domains, which indicated charge separation at the interface of the counterparts. The best result was found for the CdS-CZTS composition, which showed a potential difference between the domains up to 250 mV. These results were compared with the planar heterojunctions of CdS/CZTS and TiO2/CZTS, where CZTS nanopowder was pressed/deposited directly onto the surface of films of the corresponding n-type semiconductors. Again, I-V characteristics showed that cells based on CdS/CZTS heterojunctions have the best performance, with a photovoltage up to 200 mV and photocurrent densities up to 0.1 mA/cm2. However, the carrier generation was found to occur mainly in the CdS semiconductor, while CZTS showed no photo-response and served as the hole-transporting layer only. It is concluded that sensitization of the kesterite powder obtained by mechanochemical method is necessary to improve the performance of the corresponding solar cells.

Keywords