Catalysts (Nov 2022)

Core-Shell Hierarchical Fe/Cu Bimetallic Fenton Catalyst with Improved Adsorption and Catalytic Performance for Congo Red Degradation

  • Haimei Chen,
  • Shaofei Wang,
  • Lilan Huang,
  • Leitao Zhang,
  • Jin Han,
  • Wanzheng Ren,
  • Jian Pan,
  • Jiao Li

DOI
https://doi.org/10.3390/catal12111363
Journal volume & issue
Vol. 12, no. 11
p. 1363

Abstract

Read online

The preparation of heterogeneous Fenton catalysts with both adsorption and catalytic properties has become an effective strategy for the treatment of refractory organic wastewater. In this work, 4A-Fe@Cu bimetallic Fenton catalysts with a three-dimensional core-shell structure were prepared by a simple, template-free, and surfactant-free methodology and used in the adsorption and degradation of Congo red (CR). The results showed that the open three-dimensional network structure and the positive charge of the surface of the 4A-Fe@Cu catalyst could endow a high adsorption capacity for CR, reaching 432.9 mg/g. The good adsorption property of 4A-Fe@Cu for CR not only did not inactivate the catalytic site on 4A-Fe@Cu but also could promote the contact between CR and the active sites on the catalyst surface and accelerate the degradation process. The 4A-Fe@Cu bimetallic catalyst exhibited higher catalytic activity than monometallic 4A@Cu and/or 4A-Fe catalysts due to low work function value. The effects of different pH, H2O2 dosages, and catalyst dosages on the catalytic performance of 4A-Fe@Cu were explored. In the conditions of 7.2 mM H2O2, 2 g/L 4A-Fe@Cu, and 1 g/L CR solution, the degradation ratio of CR by 4A-Fe@Cu could reach 99.2% at pH 8. This strategy provided guidance to the design of high-performance Fenton-like catalysts with both adsorption and catalysis properties for dye wastewater treatment.

Keywords