Model-Based Control System Design of Brushless Doubly Fed Reluctance Machines Using an Unscented Kalman Filter
Yassine Benômar,
Julien Croonen,
Björn Verrelst,
Joeri Van Mierlo,
Omar Hegazy
Affiliations
Yassine Benômar
Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
Julien Croonen
Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
Omar Hegazy
Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
The Brushless Doubly Fed Reluctance Machine (BDFRM) is an emerging alternative for variable speed drive systems, providing a significant downsizing of the power electronics converter. This paper proposes a new view on the machine equations, allowing the reuse of the standard control system design for conventional synchronous and asynchronous machines: a cascade control system with an inner current control- and outer speed control loop. The assumptions and simplifications made on the machine model allow for a simple, model-based approach to set the controller gains in a brushless doubly fed machine drive system. The cascade control scheme is combined with an Unscented Kalman Filter as a state observer, capable of estimating the load torque and losses. The performance of the proposed control system design is checked in simulation and tested in real-time on a low power BDFRM prototype.