Water Supply (Feb 2021)

Electrochemical conversion pathways and existing morphology of arsenic(III) in anode-cathode separated electrolytic cells

  • Yanyan Qin,
  • Yanping Cui,
  • Zhengwei Zhou,
  • Ya Gao,
  • Lidan Lei,
  • Xiaoyan Shi

DOI
https://doi.org/10.2166/ws.2020.261
Journal volume & issue
Vol. 21, no. 1
pp. 46 – 58

Abstract

Read online

To explore the electrochemical conversion of arsenic at different voltages and pH, an open separated electrolytic cell with a platinum anode and a graphite cathode was selected for this paper. The form and concentration of arsenic in the anodic cell and cathodic cell were detected. Experimental results proved that at 40.0 V, As(III) in an acid electrolyte in the cathodic cell was firstly mainly reduced to AsH3 with trace As(0) as intermediate. As the electrolysis time arrived at 27 min, pH in the cathodic cell jumped suddenly from acidity to alkalinity, accompanied by the majority of the remaining As(III) converting to As(V) for an instant. As time went on, As(III) and As(V) remained almost unchanged at the ratio of 1:3, and the reduction of As(III) became extremely weak in the alkaline environment. When pH in the cathodic tank was adjusted to keep it acid, As(III) was eventually converted to AsH3. Compared with high voltage, at a low voltage of 1.0 V the cathode failed to achieve the potential of As(III) reduction and As(III) was eventually oxidized to As(V) in the acid catholyte. Electrochemical oxidation of As(III) in the open cathodic cell was likely caused by in-situ generation of peroxide from electrochemical reduction of O2. Theoretical support for electrochemical oxidation of As(III) on a carbon cathode in neutral and weak alkaline media is provided in this study.

Keywords