Ecology and Evolution (Dec 2021)

Diversity of European habitat types is correlated with geography more than climate and human pressure

  • Marco Cervellini,
  • Michele Di Musciano,
  • Piero Zannini,
  • Simone Fattorini,
  • Borja Jiménez‐Alfaro,
  • Emiliano Agrillo,
  • Fabio Attorre,
  • Pierangela Angelini,
  • Carl Beierkuhnlein,
  • Laura Casella,
  • Richard Field,
  • Jan‐Christopher Fischer,
  • Piero Genovesi,
  • Samuel Hoffmann,
  • Severin D. H. Irl,
  • Juri Nascimbene,
  • Duccio Rocchini,
  • Manuel Steinbauer,
  • Ole R. Vetaas,
  • Alessandro Chiarucci

DOI
https://doi.org/10.1002/ece3.8409
Journal volume & issue
Vol. 11, no. 24
pp. 18111 – 18124

Abstract

Read online

Abstract Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad‐scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models, and boosted regression trees. The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. We also found an interaction between anthropogenic variables, with the combination of increased landscape fragmentation and increased population density strongly decreasing habitat richness. This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The number of European habitats is related to geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental‐scale management plans for biodiversity conservation.

Keywords