Applied Sciences (Jul 2024)

Research on Improved Lightweight YOLOv5s for Multi-Scale Ship Target Detection

  • Peng Zhang,
  • Peiqiao Zhu,
  • Ze Sun,
  • Jun Ding,
  • Jiale Zhang,
  • Junwei Dong,
  • Wei Guo

DOI
https://doi.org/10.3390/app14146075
Journal volume & issue
Vol. 14, no. 14
p. 6075

Abstract

Read online

Fast and accurate ship target detection technology plays an important role in improving driving safety, rescue at sea, marine environmental protection, and sea traffic control. It is also one of the key technologies for the development of ship informatization and intelligence. However, the current ship target detection models used at different scales in multiple scenarios exhibit high complexity and slow inference speed. The trade-off between model detection speed and accuracy limits the deployment of ship target detection models on edge devices. This study proposes a lightweight multi-scale ship target detection model based on the Yolov5s model. In the proposed model, the lightweight EfficientnetV2 and C3Ghost networks are integrated into the backbone and neck networks of the Yolov5s model to compress the computational and parametric quantities of the model and improve the detection speed. The Shuffle Attention mechanism is embedded in the neck network component of the model to enhance the representation of important feature information, suppress irrelevant feature information, and improve the model’s detection performance. The improved method is trained and verified on the dataset collected and labeled by the authors. Compared with the baseline model, the inference speed of the proposed model increased by 29.58%, mAP0.5 improved by 0.1%, and the parameters and floating-point operations decreased by 42.82% and 68.35%, respectively. The file size of the model is 8.02MB, which is 41.46% lower than the baseline model. Compared with other lightweight models, the method proposed in this study is more favored in edge computing.

Keywords