Soil Systems (Sep 2024)
Establishment of Nitrogen-Fixing <i>Frankia</i>, Arbuscular Mycorrhizal Fungi, and Their Effects on Alder (<i>Alnus glutinosa</i> L.) Growth in Post-Mining Heap Soils
Abstract
Planting nitrogen-fixing plants in post-mining sites and similar degraded areas is a common approach to speed up soil development and buildup of the nitrogen pool in soil organic matter. The aim of this study was to explore if slower growth of alder seedlings in initial post-mining sites results from adverse soil conditions or lack of microbial symbionts. To address this question, we sampled young soil (age 15 years) and more developed soil (age 70 years) from heaps after coal mining near Sokolov (Czech Republic). Soil samples were sterilized and not inoculated or inoculated with arbuscular mycorrhizal fungi (AMF) or AMF + Frankia, followed by planting with alder (Alnus glutinosa) seedlings germinated and precultured under sterile conditions. The effect of soil age on alder growth appeared to be non-significant. The only significant growth effect was seen with Frankia inoculation, implicating this inoculum as a key factor in later succession in post-mining soils. When the soil was fully inoculated, alder biomass was higher in developed soil supplied with iron (Fe) and phosphorus (P), indicating that iron and phosphorus availability may affect alder growth. In young soil, alder growth was highest with a combination of iron, phosphorus, and sulfur (S), and a positive effect of sulfur in young soil may correspond with a reduced, alkaline soil pH and increased phosphorus and iron availability.
Keywords