Energies (Feb 2023)

Environmental Impact Assessment of PEM Fuel Cell Combined Heat and Power Generation System for Residential Application Considering Cathode Catalyst Layer Degradation

  • Shota Tochigi,
  • Kiyoshi Dowaki

DOI
https://doi.org/10.3390/en16041985
Journal volume & issue
Vol. 16, no. 4
p. 1985

Abstract

Read online

Recently, fuel cell combined heat and power systems (FC-CGSs) for residential applications have received increasing attention. The International Electrotechnical Commission has issued a technical specification (TS 62282-9-101) for environmental impact assessment procedures of FC-CGSs based on the life cycle assessment, which considers global warming during the utilization stage and abiotic depletion during the manufacturing stage. In proton exchange membrane fuel cells (PEMFCs), platinum (Pt) used in the catalyst layer is a major contributor to abiotic depletion, and Pt loading affects power generation performance. In the present study, based on TS 62282-9-101, we evaluated the environmental impact of a 700 W scale PEMFC-CGS considering cathode catalyst degradation. Through Pt dissolution and Ostwald ripening modeling, the electrochemical surface area transition of the Pt catalyst was calculated. As a result of the 10-year evaluation, the daily power generation of the PEMFC-CGS decreased by 11% to 26%, and the annual global warming value increased by 5% due to the increased use of grid electricity. In addition, when Pt loading was varied between 0.2 mg/cm2 and 0.4 mg/cm2, the 10-year global warming values were reduced by 6.5% to 7.8% compared to the case without a FC-CGS.

Keywords