IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2022)
Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation
Abstract
Medically oriented Brain Computer Interfaces (BCIs) have been proposed as a promising approach addressed to individuals suffering from severe paralysis. Steady-State Visual Evoked Potentials (SSVEPs) in particular have been proven successful in many different applications, achieving high information throughput with short or even no training. However, efficient electric wheelchair navigation combining high accuracy and comfort is still not demonstrated. In this paper, we propose the use of an SSVEP-based universal control system featuring augmented reality (AR) glasses in an attempt to increase ease of use and patient acceptability without making compromises on BCI performance. The system received positive user-feedback, reaching a mean accuracy of 90%. Merits and pitfalls of the system proposed are also addressed.
Keywords