Revista Contabilidade & Finanças (Dec 2006)

Perdas extremas em mercados de risco Extreme losses in risk markets

  • Ronaldo A Arraes,
  • Alane S Rocha

DOI
https://doi.org/10.1590/S1519-70772006000300003
Journal volume & issue
Vol. 17, no. 42
pp. 22 – 34

Abstract

Read online

Neste artigo, infere-se sobre a distribuição de valores extremos de uma variável aleatória representada pelas severas perdas diárias em investimentos financeiros. A Teoria dos Valores Extremos (TVE) fundamenta a modelagem de eventos gravosos raros, com expressivas conseqüências econômicas associadas a probabilidades muito pequenas de ocorrerem. Uma das grandes preocupações, na análise de riscos, é desenvolver técnicas para prever essas ocorrências excepcionais. Assim, as caudas das distribuições desses eventos raros são importantes para o estudo do risco, tornando a TVE uma ferramenta de grande valia para a estimação mais acurada do risco dessas perdas elevadas. Investigou-se, neste trabalho, a estimação de perdas máximas esperadas para séries financeiras, empregando-se: i) métodos tradicionais, que utilizaram todos os dados amostrais para analisar a variável aleatória em questão e ii) a metodologia dos Valores Extremos, particularmente a da Distribuição Generalizada dos Valores Extremos (DGVE), que utilizou apenas um conjunto de máximos amostrais para a estimação das perdas máximas esperadas. Concluiu-se que os métodos tradicionais subestimaram as perdas esperadas, sobretudo nas proximidades dos limites das caudas das distribuições, e que a DGVE mostrou-se bem mais eficiente na previsão dessas perdas extremas nas séries analisadas: Ibovespa, Merval, Dow Jones.This paper aims to infer about the distribution of extremes values of a continuous random variable, represented as the severe daily losses in financial markets investments. The Extreme Value Theory (EVT) plays a fundamental role in modeling rare events associated with great losses and very small probabilities of occurrence. One of the great concerns in risk management is to develop analytic techniques to foresee those exceptions. In that way, the tails of the rare losses' probability density function (pdf) are of great importance in evaluating that kind of risk, turning EVT into a valuable tool for an accurate evaluation of high loss risks. The estimations of expected maximum losses in financial series are investigated by means of: i) traditional methods, which used all sample data in fitting the random variable pdf; ii) the Extreme Value methodology, particularly the Generalized Extreme Value distribution (GEV), which only used a set of maximum values detected in the sample data in estimating the pdf of expected maximum losses. The findings indicate, firstly, an important underestimation of extreme losses with the traditional methods, mainly in the pdf lower tail limits, and, secondly, that the GEV distribution proved to be more efficient in forecasting extreme losses in the analyzed series: Ibovespa, Merval, Dow Jones.

Keywords