Frontiers in Molecular Biosciences (Feb 2022)
Breast Cancer; Discovery of Novel Diagnostic Biomarkers, Drug Resistance, and Therapeutic Implications
Abstract
Breast cancer is the second most reported cancer in women with high mortality causing millions of cancer-related deaths annually. Early detection of breast cancer intensifies the struggle towards discovering, developing, and optimizing diagnostic biomarkers that can improve its prognosis and therapeutic outcomes. Breast cancer-associated biomarkers comprise macromolecules, such as nucleic acid (DNA/RNA), proteins, and intact cells. Advancements in molecular technologies have identified all types of biomarkers that are exclusively studied for diagnostic, prognostic, drug resistance, and therapeutic implications. Identifying biomarkers may solve the problem of drug resistance which is a challenging obstacle in breast cancer treatment. Dysregulation of non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) initiates and progresses breast cancer. The circulating multiple miRNA profiles promise better diagnostic and prognostic performance and sensitivity than individual miRNAs. The high stability and existence of circRNAs in body fluids make them a promising new diagnostic biomarker. Many therapeutic-based novels targeting agents have been identified, including ESR1 mutation (DNA mutations), Oligonucleotide analogs and antagonists (miRNA), poly (ADP-ribose) polymerase (PARP) in BRCA mutations, CDK4/6 (cell cycle regulating factor initiates tumor progression), Androgen receptor (a steroid hormone receptor), that have entered clinical validation procedure. In this review, we summarize the role of novel breast cancer diagnostic biomarkers, drug resistance, and therapeutic implications for breast cancer.
Keywords