Fuzzy Model Parameter and Structure Optimization Using Analytic, Numerical and Heuristic Approaches
Joel Artemio Morales-Viscaya,
Adán Antonio Alonso-Ramírez,
Marco Antonio Castro-Liera,
Juan Carlos Gómez-Cortés,
David Lazaro-Mata,
José Eleazar Peralta-López,
Carlos A. Coello Coello,
José Enrique Botello-Álvarez,
Alejandro Israel Barranco-Gutiérrez
Affiliations
Joel Artemio Morales-Viscaya
Tecnológico Nacional de México en Celaya (TecNM), Antonio García Cubas, Pte #600 Esquina. Av. Tecnológico, Celaya 38010, Mexico
Adán Antonio Alonso-Ramírez
Tecnológico Nacional de México en Celaya (TecNM), Antonio García Cubas, Pte #600 Esquina. Av. Tecnológico, Celaya 38010, Mexico
Marco Antonio Castro-Liera
Tecnologico Nacional de Mexico en La Paz (TecNM), Forjadores de Baja California Sur #4720, La Paz 23080, Mexico
Juan Carlos Gómez-Cortés
Tecnológico Nacional de México en Celaya (TecNM), Antonio García Cubas, Pte #600 Esquina. Av. Tecnológico, Celaya 38010, Mexico
David Lazaro-Mata
Tecnológico Nacional de México en Celaya (TecNM), Antonio García Cubas, Pte #600 Esquina. Av. Tecnológico, Celaya 38010, Mexico
José Eleazar Peralta-López
Tecnológico Nacional de México en Celaya (TecNM), Antonio García Cubas, Pte #600 Esquina. Av. Tecnológico, Celaya 38010, Mexico
Carlos A. Coello Coello
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional #2508, Ciudad de México 07360, Mexico
José Enrique Botello-Álvarez
Tecnológico Nacional de México en Celaya (TecNM), Antonio García Cubas, Pte #600 Esquina. Av. Tecnológico, Celaya 38010, Mexico
Alejandro Israel Barranco-Gutiérrez
Tecnológico Nacional de México en Celaya (TecNM), Antonio García Cubas, Pte #600 Esquina. Av. Tecnológico, Celaya 38010, Mexico
Fuzzy systems are widely used in most fields of science and engineering, mainly because the models they produce are robust, accurate, easy to evaluate and capture real-world uncertainty better than do the classical alternatives. We propose a new methodology for structure and parameter tuning of Takagi–Sugeno–Kang fuzzy models using several optimization techniques. The output parameters are determined analytically, by finding the minimum of the root-mean-square error (RMSE) for a properly defined error function. The membership functions are simplified by considering symmetry and equispacing, to reduce the optimization problem of finding their parameters, and allow it to be carried out using the numerical method of gradient descent. Both algorithms are fast enough to finally implement a strategy based on the hill climbing approach to finding the optimal structure (number and type of membership functions) of the fuzzy system. The effectiveness of the proposed strategy is shown by comparing its performance, using four case studies found in current relevant works, to the popular adaptive network-based fuzzy inference system (ANFIS), and to other recently published strategies based on evolutionary fuzzy models. In terms of the RMSE, performance was at least 28% better in all case studies.