Intensive Care Medicine Experimental (Jul 2018)

A vascular endothelial growth factor receptor gene variant is associated with susceptibility to acute respiratory distress syndrome

  • Natalia Hernandez-Pacheco,
  • Beatriz Guillen-Guio,
  • Marialbert Acosta-Herrera,
  • Maria Pino-Yanes,
  • Almudena Corrales,
  • Alfonso Ambrós,
  • Leonor Nogales,
  • Arturo Muriel,
  • Elena González-Higueras,
  • Francisco J. Diaz-Dominguez,
  • Elizabeth Zavala,
  • Javier Belda,
  • Shwu-Fan Ma,
  • Jesús Villar,
  • Carlos Flores,
  • the GEN-SEP Network

DOI
https://doi.org/10.1186/s40635-018-0181-6
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background The acute respiratory distress syndrome (ARDS) is one of the main causes of mortality in adults admitted to intensive care units. Previous studies have demonstrated the existence of genetic variants involved in the susceptibility and outcomes of this syndrome. We aimed to identify novel genes implicated in sepsis-induced ARDS susceptibility. Methods We first performed a prioritization of candidate genes by integrating our own genomic data from a transcriptomic study in an animal model of ARDS and from the only published genome-wide association study of ARDS study in humans. Then, we selected single nucleotide polymorphisms (SNPs) from prioritized genes to conduct a case-control discovery association study in patients with sepsis-induced ARDS (n = 225) and population-based controls (n = 899). Finally, we validated our findings in an independent sample of 661 sepsis-induced ARDS cases and 234 at-risk controls. Results Three candidate genes were prioritized: dynein cytoplasmic-2 heavy chain-1, fms-related tyrosine kinase 1 (FLT1), and integrin alpha-1. Of those, a SNP from FLT1 gene (rs9513106) was associated with ARDS in the discovery study, with an odds ratio (OR) for the C allele of 0.76, 95% confidence interval (CI) 0.58–0.98 (p = 0.037). This result was replicated in an independent study (OR = 0.78, 95% CI = 0.62–0.98, p = 0.039), showing consistent direction of effects in a meta-analysis (OR = 0.77, 95% CI = 0.65–0.92, p = 0.003). Conclusions We identified FLT1 as a novel ARDS susceptibility gene and demonstrated that integration of genomic data can be a valid procedure to identify novel susceptibility genes. These results contribute to previous firm associations and functional evidences implicating FLT1 gene in other complex traits that are mechanistically linked, through the key role of endothelium, to the pathophysiology of ARDS.

Keywords