Scientific Reports (Jan 2023)

Absorption of pressurized methane in normal and supercooled p-xylene revealed via high-resolution neutron imaging

  • Ondřej Vopička,
  • Tereza-Markéta Durďáková,
  • Petr Číhal,
  • Pierre Boillat,
  • Pavel Trtik

DOI
https://doi.org/10.1038/s41598-022-27142-6
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Supercooling of liquids leads to peculiarities which are scarcely studied under high-pressure conditions. Here, we report the surface tension, solubility, diffusivity, and partial molar volume for normal and supercooled liquid solutions of methane with p-xylene. Liquid bodies of perdeuterated p-xylene (p-C8D10), and, for comparison, o-xylene (o-C8D10), were exposed to pressurized methane (CH4, up to 101 bar) at temperatures ranging 7.0–30.0 °C and observed at high spatial resolution (pixel size 20.3 μm) using a non-tactile neutron imaging method. Supercooling led to the increase of diffusivity and partial molar volume of methane. Solubility and surface tension were insensitive to supercooling, the latter substantially depended on methane pressure. Overall, neutron imaging enabled to reveal and quantify multiple phenomena occurring in supercooled liquid p-xylene solutions of methane under pressures relevant to the freeze-out in the production of liquefied natural gas.