Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants
Na Wang,
Haiwei Pei,
Wenzhou Xiang,
Tao Li,
Shengjie Lin,
Jiayi Wu,
Zishuo Chen,
Houbo Wu,
Chuanmao Li,
Hualian Wu
Affiliations
Na Wang
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Haiwei Pei
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Wenzhou Xiang
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Tao Li
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Shengjie Lin
Guangzhou Keneng Cosmetic Scientific Research Co., Ltd., Guanghzou 510800, China
Jiayi Wu
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Zishuo Chen
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Houbo Wu
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Chuanmao Li
Guangzhou Keneng Cosmetic Scientific Research Co., Ltd., Guanghzou 510800, China
Hualian Wu
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
In order to rapidly screen microalgae species as feedstocks for antioxidants, extracts were obtained from 16 microalgae strains (under 11 genera, 7 classes) using two methods: a one-step extraction with ethanol/water and a three-step fractionating procedure using hexane, ethylacetate, and water successively. Measuring the total phenol content (TPC), total carotenoid content (TCC), and antioxidant activity of the extracts, indicating TPC and TCC, played an important role in determining the antioxidant activity of the microalgae. A weighted scoring system was used to evaluate the antioxidant activity, and the scores of microalgal samples from two extraction methods were calculated using the same system. Among the investigated microalgae, Euglena gracilis SCSIO-46781 had the highest antioxidant score, contributing to high TPC and TCC, followed by Arthrospira platensis SCSIO-44012, Nannochloropsis sp. SCSIO-45224, Phaeodactylum tricornutum SCSIO-45120, and Nannochloropsis sp. SCSIO-45006, respectively. Additionally, the above-mentioned five strains are currently being applied in commercial production, indicating this system could be effective not only for screening microalgal antioxidants, but also for screening microalgal species/strains with strong adaptation to environmental stress, which is a critical trait for their commercial cultivation.