Forests (Feb 2022)

Impact of Ice-Storms and Subsequent Salvage Logging on the Productivity of <i>Cunninghamia lanceolata</i> (Chinese Fir) Forests

  • Yu Zhu,
  • Shuguang Liu,
  • Wende Yan,
  • Deming Deng,
  • Guangyi Zhou,
  • Meifang Zhao,
  • Fei Gao,
  • Liangjun Zhu,
  • Zhao Wang,
  • Menglu Xie

DOI
https://doi.org/10.3390/f13020296
Journal volume & issue
Vol. 13, no. 2
p. 296

Abstract

Read online

The impacts of ice-storms on forests have received growing attention in recent years. Although there is a wide agreement that ice-storms significantly affect forest structure and functions, how frequent ice-storms and subsequent salvage logging impact productivity of subtropical coniferous forests in the future still remains poorly understood. In this study, we used the Ecosystem Demography model, Version 2.2 (ED-2.2), to project the impact of salvage logging of ice-storm-damaged trees on the productivity of Cunninghamia lanceolata-dominated coniferous forest and C. lanceolata-dominated mixed coniferous and broadleaved forests. The results show that forest productivity recovery is delayed in coniferous forests when there is no shade-tolerant broadleaved species invasion after ice-storms, and C. lanceolata could continue to dominate the canopy in the mixed coniferous and broadleaved forests under high-frequency ice-storms and subsequent salvage logging. The resistance and resilience of the mixed coniferous and broadleaved forests to high-frequency ice-storms and subsequent salvage logging were stronger compared to coniferous forests. Although conifers could continue to dominate the canopy under shade-tolerant broadleaved species invasion, we could not rule out the possibility of a future forest community dominated by shade-tolerant broadleaf trees because there were few coniferous saplings and shade-tolerant broadleaf species dominated the understory. Our results highlight that post-disaster forest management should be continued after high-frequency ice-storms and subsequent salvage logging in C. lanceolata forests to prevent possible shade-tolerant, late successional broadleaf trees from dominating the canopy in the future.

Keywords