Journal of Economy and Technology (Nov 2023)
Artificial neural networks in supply chain management, a review
Abstract
Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired by the structure and function of the human brain. In the context of supply chain management, ANNs can be used for demand forecasting, inventory optimization, logistics planning, and anomaly detection. ANNs help companies to optimize their inventory levels, production schedules and procurement activities in terms of productivity enhancement of part production. By considering multiple variables and constraints, ANNs can identify the most efficient routes, allocate resources effectively, and reduce costs. Furthermore, ANNs can identify anomalies as well as abnormalities in supply chain data, such as unexpected demand patterns, quality issues and disruptions in logistics operations in order to minimize their impact on the supply chain. ANNs can also analyze supplier performance data, including quality, delivery times and pricing in order to assess the reliability and effectiveness of suppliers. This information can support decision-making processes in supplier evaluation and selection processes. Moreover, ANNs can continuously monitor supplier performance, raising alerts for deviations from predefined criteria to provide safe and secure supply chain in part production processes. By analyzing various data sources, including weather conditions, and political instability, ANNs can identify and mitigate risks in terms of safety enhancement of supply chain processes. Artificial neural networks in supply chain management is studied in the research work to analyze and enhance performances of supply chain management in process of part manufacturing. New ideas and concepts of future research works are presented by reviewing and analyzing of recent achievements in applications of artificial neural networks in supply chain management. Thus, productivity of part manufacturing can be enhanced by promoting the supply chain management using the artificial neural networks.