Engineering Science and Technology, an International Journal (May 2025)
Development of bi-directional switched-capacitor DC-DC converter for EV powertrain application
Abstract
The research presents a novel Bidirectional Switched Capacitor DC-DC (BSCD) Converter and demonstrates its application in integrating a battery with an electric vehicle’s (EV) traction motor. During discharging, the motor is powered by the battery through the converter, and during charging, the traction motor functions as a generator, returning the recovered energy to the battery via the converter. The recommended converter employs a two-duty cycle operation to enhance voltage gain while minimizing circuit components. It utilizes a switched capacitor (SC) cell, enhancing the voltage transfer ratio by operating capacitors CS1 and CS2 in parallel or series. The work includes analysis of the converter’s steady state, mathematical approach, state-space modelling, stability, and efficiency. The proposed converter achieves an efficiency of 90.66 % in charging mode and 96.6 % in discharging mode, with a Gain Margin of 54.4 dB and Phase Margin of 8.09°, indicating stability. Comparative evaluations with existing BDCs are also provided. The implementation of a closed-loop simulation using MATLAB/Simulink and dSpace software validates the performance of the suggested converter-based drive. Furthermore, an experimental investigation of a 200 W, 30 V/430 V configuration confirms the converter’s practical viability.
Keywords