(1) Background: Open-source software tools are available to estimate proton density fat fraction (PDFF). (2) Methods: We compared four algorithms: complex-based with graph cut (GC), magnitude-based (MAG), magnitude-only estimation with Rician noise modeling (MAG-R), and multi-scale quadratic pseudo-Boolean optimization with graph cut (QPBO). The accuracy and reliability of the methods were evaluated in phantoms with known fat/water ratios and a patient cohort with various grades (S0–S3) of steatosis. Image acquisitions were performed at 1.5 Tesla (T). (3) Results: The PDFF estimates showed a nearly perfect correlation (Pearson r = 0.999, p p p p = 0.005) were lower than MAG-R. The field inhomogeneity artifacts were most frequent in MAG-R (70%) and GC (39%) and absent in QPBO images. (4) Conclusions: The tested algorithms all accurately estimate PDFF in vitro. Meanwhile, QPBO is the least affected by field inhomogeneity artifacts in vivo.