AIMS Materials Science (Apr 2021)

A survey on pristine and intercalation doped graphene nanoribbon interconnect for future VLSI circuits

  • Subhajit Das ,
  • Sandip Bhattacharya,
  • Debaprasad Das,
  • Hafizur Rahaman

DOI
https://doi.org/10.3934/matersci.2021016
Journal volume & issue
Vol. 8, no. 2
pp. 247 – 260

Abstract

Read online

The paper presents a review of recent works on pristine and intercalation doped graphene nanoribbon interconnects. Since the last decade, there have been tremendous research interests on graphene-based nanoelectronics. Graphene nanoribbon (GNR) has been projected as an interconnect material to replace the traditional copper interconnects. Since graphene is a planar material, CMOS compatible processes for patterning and making contacts to it, can be developed. Though, fabricating side-contacts in multilayered GNR (MLGNR) is a challenging task, fabrication of top-contact MLGNR is technologically viable. In addition, intercalation doping in top-contact MLGNR improves effective conductivity further. A number of models have been developed to optimize emerging on-chip interconnect technologies and benchmark them against conventional technologies. In this review, physical and electrical models of pristine and intercalation doped MLGNRs have been discussed in brief. A chronological survey towards analytical and spice compatible modeling of pristine and intercalation doped top-contact (TC) and side-contact (SC) MLGNR interconnect, has been presented in this article. A brief review of experimental work on pristine and intercalated GNRs as on-chip interconnect has also been incorporated in this survey. The stability, signal integrity (SI), and power integrity (PI) analysis of pristine and intercalation doped MLGNR interconnect with the presented models have been depicted further. The performance assessments have been compared with conventional copper, and CNT-based interconnects as well. It has been concluded that the side-contact and intercalation doped top-contact MLGNRs can outperform conventional copper-based interconnects.

Keywords