odd skipped-related 2 as a novel mark for labeling the proximal convoluted tubule within the zebrafish kidney
Wenmin Yang,
Xiaoliang Liu,
Zhongwei He,
Yunfeng Zhang,
Xiaoqin Tan,
Chi Liu
Affiliations
Wenmin Yang
Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
Xiaoliang Liu
Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
Zhongwei He
Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
Yunfeng Zhang
Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
Xiaoqin Tan
Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
Chi Liu
Corresponding author.; Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037, Chongqing, PR China
The proximal convoluted tubule (PCT) of the kidney is a crucial functional segment responsible for reabsorption, secretion, and the maintenance of electrolyte and water balance within the renal tubule. However, there is a lack of a well-defined endogenous transgenic line for studying PCT morphogenesis. By analyzing single-cell transcriptome data from the adult zebrafish kidney, we have identified the expression of odd-skipped-related 2 (osr2, which encodes an odd-skipped zinc-finger transcription factor) in the PCT. To gain insight into the role of osr2 in PCT morphogenesis, we have generated a transgenic zebrafish line Tg(osr2:EGFP), expressing enhanced green fluorescent protein (EGFP). The EGFP expression pattern closely mirrors that of endogenous Osr2, faithfully recapitulating its native expression profile. During kidney development, we can use EGFP to track PCT development, which is also preserved in adult zebrafish. Additionally, osr2:EGFP-labeled zebrafish PCT fragments displayed short lengths with infrequent overlap, rendering them conducive for nephrons counting. The generation of Tg(osr2:EGFP) transgenic line is accompanied by simultaneous disruption of osr2 activity. Importantly, our findings demonstrate that osr2 inactivation had no discernible impact on the development and regeneration of Tg(osr2:EGFP) zebrafish nephrons. Overall, the establishment of this transgenic zebrafish line offers a valuable tool for both genetic and chemical analysis of PCT.