Boletim da Sociedade Paranaense de Matemática (Feb 2022)

Existence of entropy solutions of the anisotropic elliptic nonlinear problem with measure data in weighted Sobolev space

  • Adil Abbassi,
  • Chakir Allalou,
  • Abderrazak Kassidi

DOI
https://doi.org/10.5269/bspm.52541
Journal volume & issue
Vol. 40

Abstract

Read online

This paper is devoted to study the following nonlinear anisotropic elliptic unilateral problem \begin{equation*} \begin{cases} A\,u -\mbox{div}\,\phi(u)=\mu \quad \mbox{in} \qquad \Omega \\ \;u=0 \qquad \mbox{on} \quad \partial \Omega , \end{cases} \end{equation*} where the right hand side $\,\mu\;$ belongs to $\; L^1(\Omega)+ W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$. The operator $\displaystyle A\,u=-\sum_{i=1}^{N}\partial_{i}\,a_{i}(x,\ u,\ \nabla u)$ is a Leray-Lions anisotropic operator acting from $\; W_{0}^{1,\overrightarrow{p}} (\Omega,\ \overrightarrow{\omega})\;$ into its dual $\; W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$ and $\phi_{i}\in C^{0}(\mathbb{R},\mathbb{R})$.