International Journal of Polymer Science (Jan 2018)

Synthesis and Polymerization of Naphthoxazines Containing Furan Groups: An Approach to Novel Biobased and Flame-Resistant Thermosets

  • Davi Rabelo de Oliveira,
  • Selma Elaine Mazzetto,
  • Diego Lomonaco

DOI
https://doi.org/10.1155/2018/4201681
Journal volume & issue
Vol. 2018

Abstract

Read online

Naphthoxazines are a class of compounds with potential application in obtaining high-performance polymeric materials. Such application of these compounds, however, is still scarcely explored in the literature. Combined with the search for new high-performance materials, the development of biobased polymers has gained a lot of attention. In this sense, the inclusion of furan groups in polymers has been explored as a strategy that combines the search for high-performance materials with the search for the development of biobased materials. In this work, novel naphthoxazine monomers containing furan groups were synthetized. The syntheses were carried out in a single step, without the use of solvents and catalysts, obtaining the products in satisfactory yields and high purity. The naphthoxazines had their chemical structures completely characterized by FTIR, 1H NMR, and 13C NMR techniques. The thermal analyses (DSC and TGA) showed that all naphthoxazines exhibit exothermic typical polymerization events, making these compounds suitable for obtention of poly(naphthoxazines) resins, but suffer significant mass losses at temperatures below the onset polymerization temperature. In this way, a catalyst (1 mol% MgCl2) was used in order to allow the polymerization of the compounds before the mass loss events. The FTIR analysis showed strong evidences of the formation of poly(naphthoxazines), and TGA analyses showed that the resins have high thermal stability, with high flame resistance and self-extinguishing properties (LOI > 28), which makes these compounds attractive in the development of biobased and high-performance materials.