Mathematics in Engineering (Mar 2021)

Gradient Lagrangian systems and semilinear PDE

  • Francesca G. Alessio,
  • Piero Montecchiari

DOI
https://doi.org/10.3934/mine.2021044
Journal volume & issue
Vol. 3, no. 6
pp. 1 – 28

Abstract

Read online

We survey some results about multiplicity of certain classes of entire solutions to semilinear elliptic equations or systems of the form $-\Delta u=F_{u}(x,u)$, $x\in\R^{N+1}$, including the Allen Cahn or the stationary Nonlinear Schr\"odinger case. In connection with this kind of problems we study some metric separation properties of sublevels of the functional $V(u)=\tfrac 12\|\nabla u\|_{H^{1}(\R^{N})}^{2}-\tfrac 1{p+1}\| u\|_{L^{p+1}(\R^{N})}^{p+1}$ in relation to the value of the exponent $p+1\in (2,2^{*}_{N})$.

Keywords