Applied Sciences (Feb 2021)

Improving Distant Supervised Relation Extraction with Noise Detection Strategy

  • Xiaoyan Meng,
  • Tonghai Jiang,
  • Xi Zhou,
  • Bo Ma,
  • Yi Wang,
  • Fan Zhao

DOI
https://doi.org/10.3390/app11052046
Journal volume & issue
Vol. 11, no. 5
p. 2046

Abstract

Read online

Distant supervised relation extraction (DSRE) is widely used to extract novel relational facts from plain text, so as to improve the knowledge graph. However, distant supervision inevitably suffers from the noisy labeling problem that will severely damage the performance of relation extraction. Currently, most DSRE methods are mainly focused on reducing the weights of noisy sentences, ignoring the bag-level noise where all sentences in a bag are wrongly labeled. In this paper, we present a novel noise detection-based relation extraction approach (NDRE) to automatically detect noisy labels with entity information and dynamically correct them, which can alleviate both instance-level and bag-level noisy problems. By this means, we can extend the dataset from the Web tables without introducing more noise. In this approach, to embed the semantics of sentences from corpus and web tables, we firstly propose a powerful sentence coder that employs an internal multi-head self-attention mechanism between the piecewise max-pooling convolutional neural network. Second, we adopt a noise detection strategy, which is expected to dynamically detect and correct the original noisy label according to the similarity between sentence representation and entity-aware embeddings. Then, we aggregate the information from corpus and web tables to make the final relation prediction. Experimental results on a public benchmark dataset demonstrate that our proposed approach achieves significant improvements over the state-of-the-art baselines and can effectively reduce the noisy labeling problem.

Keywords