Journal of Fungi (Nov 2020)

Divergence of Beauvericin Synthase Gene among <i>Fusarium</i> and <i>Trichoderma</i> Species

  • Monika Urbaniak,
  • Agnieszka Waśkiewicz,
  • Grzegorz Koczyk,
  • Lidia Błaszczyk,
  • Łukasz Stępień

DOI
https://doi.org/10.3390/jof6040288
Journal volume & issue
Vol. 6, no. 4
p. 288

Abstract

Read online

Beauvericin (BEA) is a cyclodepsipeptide mycotoxin, showing insecticidal, antibiotic and antimicrobial activities, as well as inducing apoptosis of cancer cell lines. BEA can be produced by multiple fungal species, including saprotrophs, plant, insect and human pathogens, particularly belonging to Fusarium, Beauveria and Isaria genera. The ability of Trichoderma species to produce BEA was until now uncertain. Biosynthesis of BEA is governed by a non-ribosomal peptide synthase (NRPS), known as beauvericin synthase (BEAS), which appears to present considerable divergence among different fungal species. In the present study we compared the production of beauvericin among Fusarium and Trichoderma strains using UPLC methods. BEAS fragments were sequenced and analyzed to examine the level of the gene’s divergence between these two genera and confirm the presence of active BEAS copy in Trichoderma. Seventeen strains of twelve species were studied and phylogenetic analysis showed distinctive grouping of Fusarium and Trichoderma strains. The highest producers of beauvericin were F. proliferatum and F. nygamai. Trichoderma strains of three species (T. atroviride, T. viride, T. koningiopsis) were minor BEA producers. The study showed beauvericin production by Fusarium and Trichoderma species and high variance of the non-ribosomal peptide synthase gene among fungal species from the Hypocreales order.

Keywords