Mathematics (Jan 2023)
Constructing Traceability Links between Software Requirements and Source Code Based on Neural Networks
Abstract
Software requirement changes, code changes, software reuse, and testing are important activities in software engineering that involve the traceability links between software requirements and code. Software requirement documents, design documents, code documents, and test case documents are the intermediate products of software development. The lack of interrelationship between these documents can make it extremely difficult to change and maintain the software. Frequent requirements and code changes are inevitable in software development. Software reuse, change impact analysis, and testing also require the relationship between software requirements and code. Using these traceability links can improve the efficiency and quality of related software activities. Existing methods for constructing these links need to be better automated and accurate. To address these problems, we propose to embed software requirements and source code into feature vectors containing their semantic information based on four neural networks (NBOW, RNN, CNN, and self-attention). Accurate traceability links from requirements to code are established by comparing the similarity between these vectors. We develop a prototype tool RCT based on this method. These four networks’ performances in constructing links are explored on 18 open-source projects. The experimental results show that the self-attention network performs best, with an average Recall@50 value of 0.687 on the 18 projects, which is higher than the other three neural network models and much higher than previous approaches using information retrieval and machine learning.
Keywords