Microorganisms (Nov 2021)

Multi-Omics Reveals the Inhibition of <i>Lactiplantibacillus plantarum</i> CCFM8724 in <i>Streptococcus mutans</i>-<i>Candida albicans</i> Mixed-Species Biofilms

  • Qiuxiang Zhang,
  • Jiaxun Li,
  • Wenwei Lu,
  • Jianxin Zhao,
  • Hao Zhang,
  • Wei Chen

Journal volume & issue
Vol. 9, no. 2368
p. 2368


Read online

Lactiplantibacillus plantarum CCFM8724 is a probiotic with the potential to prevent dental caries in vitro and in vivo. To explore the effects of this probiotic at inhibiting Streptococcus mutans-Candida albicans mixed-species biofilm and preventing dental caries, multi-omics, including metabolomics and transcriptomics, was used to investigate the regulation of small-molecule metabolism during biofilm formation and the gene expression in the mixed-species biofilm. Metabolomic analysis revealed that some carbohydrates related to biofilm formation, such as sucrose, was detected at lower levels due to the treatment with the L. plantarum supernatant. Some sugar alcohols, such as xylitol and sorbitol, were detected at higher levels, which may have inhibited the growth of S. mutans. In transcriptomic analysis, the expression of the virulence genes of C. albicans, such as those that code agglutinin-like sequence (Als) proteins, was affected. In addition, metabolomics coupled with a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and RNA-seq revealed that the L. plantarum supernatant had an active role in sugar metabolism during the formation of the S. mutans-C. albicans mixed-species biofilm, and the L. plantarum supernatant was also related to carbohydrate utilization, glucan biosynthesis, and mycelium formation. Hence, L. plantarum CCFM8724 decreased the mixed-species biofilm mass from the perspective of gene expression and metabolic reprogramming. Our results provide a rationale for evaluating L. plantarum CCFM8724 as a potential oral probiotic for inhibiting cariogenic pathogen biofilm formation and improving dental caries.