Biomedicines (Jul 2021)

In Vitro Evaluation of a Nanoparticle-Based mRNA Delivery System for Cells in the Joint

  • Lisa Sturm,
  • Bettina Schwemberger,
  • Ursula Menzel,
  • Sonja Häckel,
  • Christoph E. Albers,
  • Christian Plank,
  • Jaap Rip,
  • Mauro Alini,
  • Andreas Traweger,
  • Sibylle Grad,
  • Valentina Basoli

DOI
https://doi.org/10.3390/biomedicines9070794
Journal volume & issue
Vol. 9, no. 7
p. 794

Abstract

Read online

Biodegradable and bioresponsive polymer-based nanoparticles (NPs) can be used for oligonucleotide delivery, making them a promising candidate for mRNA-based therapeutics. In this study, we evaluated and optimized the efficiency of a cationic, hyperbranched poly(amidoamine)s-based nanoparticle system to deliver tdTomato mRNA to primary human bone marrow stromal cells (hBMSC), human synovial derived stem cells (hSDSC), bovine chondrocytes (bCH), and rat tendon derived stem/progenitor cells (rTDSPC). Transfection efficiencies varied among the cell types tested (bCH 28.4% ± 22.87, rTDSPC 18.13% ± 12.07, hBMSC 18.23% ± 14.80, hSDSC 26.63% ± 8.81) and while an increase of NPs with a constant amount of mRNA generally improved the transfection efficiency, an increase of the mRNA loading ratio (2:50, 4:50, or 6:50 w/w mRNA:NPs) had no impact. However, metabolic activity of bCHs and rTDSPCs was significantly reduced when using higher amounts of NPs, indicating a dose-dependent cytotoxic response. Finally, we demonstrate the feasibility of transfecting extracellular matrix-rich 3D cell culture constructs using the nanoparticle system, making it a promising transfection strategy for musculoskeletal tissues that exhibit a complex, dense extracellular matrix.

Keywords