International Journal of Molecular Sciences (Feb 2023)

Caspase Inhibition Modulates Monocyte-Derived Macrophage Polarization in Damaged Tissues

  • Stéphanie Solier,
  • Michele Mondini,
  • Lydia Meziani,
  • Arnaud Jacquel,
  • Catherine Lacout,
  • Tom Vanden Berghe,
  • Yvon Julé,
  • Jean-Claude Martinou,
  • Gérard Pierron,
  • Julie Rivière,
  • Marc Deloger,
  • Corinne Dupuy,
  • Anny Slama-Schwok,
  • Nathalie Droin,
  • Peter Vandenabeele,
  • Patrick Auberger,
  • Eric Deutsch,
  • Jamel El-Benna,
  • Pham My-Chan Dang,
  • Eric Solary

DOI
https://doi.org/10.3390/ijms24044151
Journal volume & issue
Vol. 24, no. 4
p. 4151

Abstract

Read online

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.

Keywords