PLoS ONE (Jan 2012)
The p50 subunit of NF-κB orchestrates dendritic cell lifespan and activation of adaptive immunity.
Abstract
Dendritic cells play a central role in keeping the balance between immunity and immune tolerance. A key factor in this equilibrium is the lifespan of DC, as its reduction restrains antigen availability leading to termination of immune responses. Here we show that lipopolysaccharide-driven DC maturation is paralleled by increased nuclear levels of p50 NF-κB, an event associated with DC apoptosis. Lack of p50 in murine DC promoted increased lifespan, enhanced level of maturation associated with increased expression of the proinflammatory cytokines IL-1, IL-18 and IFN-β, enhanced capacity of activating and expanding CD4(+) and CD8(+) T cells in vivo and decreased ability to induce differentiation of FoxP3(+) regulatory T cells. In agreement, vaccination of melanoma-bearing mice with antigen-pulsed LPS-treated p50(-/-) BM-DC boosted antitumor immunity and inhibition of tumor growth. We propose that nuclear accumulation of the p50 NF-κB subunit in DC, as occurring during lipopolysaccharide-driven maturation, is a homeostatic mechanism tuning the balance between uncontrolled activation of adaptive immunity and immune tolerance.