Variability in Water Use Efficiency of Grapevine Tempranillo Clones and Stability over Years at Field Conditions
Ignacio Tortosa,
Cyril Douthe,
Alicia Pou,
Pedro Balda,
Esther Hernandez-Montes,
Guillermo Toro,
José M. Escalona,
Hipólito Medrano
Affiliations
Ignacio Tortosa
Group on Plant Biology under Mediterranean Conditions, Department of Biology, INAGEA (INIA-UIB), Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
Cyril Douthe
Group on Plant Biology under Mediterranean Conditions, Department of Biology, INAGEA (INIA-UIB), Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
Alicia Pou
Instituto de Ciencias de la Vid y del Vino, Ctra. de Burgos Km. 6, 26007 Logroño, Spain
Pedro Balda
Group on Plant Biology under Mediterranean Conditions, Department of Biology, INAGEA (INIA-UIB), Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
Esther Hernandez-Montes
Group on Plant Biology under Mediterranean Conditions, Department of Biology, INAGEA (INIA-UIB), Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
Guillermo Toro
Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
José M. Escalona
Group on Plant Biology under Mediterranean Conditions, Department of Biology, INAGEA (INIA-UIB), Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
Hipólito Medrano
Group on Plant Biology under Mediterranean Conditions, Department of Biology, INAGEA (INIA-UIB), Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
One way to face the consequences of climate change and the expected increase in water availability in agriculture is to find genotypes that can sustain production at a lower water cost. This theoretically can be achieved by using genetic material with an increased water use efficiency. We compared the leaf Water Use Efficiency (WUEi) under realistic field conditions in 14 vine genotypes of the Tempranillo cultivar (clones), in two sites of Northern Spain for three and five years each to evaluate (1) if a clonal diversity exists for this traits among those selected clones and (2) the stability of those differences over several years. The ranking of the different clones showed significant differences in WUEi that were maintained over years in most of the cases. Different statistical analyses gave coincident information and allowed the identification of some clones systematically that had a higher WUEi or a lower WUEi. These methods also allowed the identification of the underlying physiological process that caused those differences and showed that clones with a higher WUEi are likely to have an increased photosynthetic capacity (rather than a different stomatal control). Those differences could be useful to orientate the decision for vines selection programs in the near future.