International Journal of Forestry Research (Jan 2018)

Allometric Equations for Estimating Silk Oak (Grevillea robusta) Biomass in Agricultural Landscapes of Maragua Subcounty, Kenya

  • Omamo Augustine Owate,
  • Mugo Joseph Mware,
  • Mwangi James Kinyanjui

DOI
https://doi.org/10.1155/2018/6495271
Journal volume & issue
Vol. 2018

Abstract

Read online

Grevillea robusta is widely interplanted with crops in Maragua subcounty, a practice that enhances biomass quantities in farmlands. However, quick tools for estimating biomass of such trees are lacking resulting in undervaluation of the farm product. This study sought to develop allometric equations for estimating tree biomass using diameter at breast height (DBH) and tree height as predictor variables. Tree biomass was computed using thirty-three (33) trees randomly selected from 12 one hectare plots established in each of the four agroecological zones (AEZs). DBH of all Grevillea robusta trees per plot was measured and three trees were selected for destructive sampling to cover the variety of tree sizes. Regression analysis was used to develop equations relating DBH/tree height to biomass based on linear, exponential, power, and polynomial functions. The polynomial and the power equations had the highest R2, lowest SEE, and MRE values, while DBH was the most suitable parameter for estimating tree biomass. The tree stem, branches, foliage, and roots biomass comprised 56.89%, 14.11%, 6.67%, and 22.32% of the total tree biomass, respectively. The mean tree biomass density (12.430±1.84 ton ha−1) showed no significant difference (p=0.09) across AEZs implying no difference in G. robusta agroforestry stocks across the AEZ. The allometric equations will support marketing of tree products by farmers and therefore better conservation and management of the tree resource.