Applied Sciences (Dec 2023)

Superelastic Shape Memory Alloy Honeycomb Damper

  • Sasa Cao,
  • Fulong Hu,
  • Guixin Zhang

DOI
https://doi.org/10.3390/app132413154
Journal volume & issue
Vol. 13, no. 24
p. 13154

Abstract

Read online

The relative displacements between the girders and piers of isolated bridges during intense earthquakes are usually so large that traditional restrainers cannot accommodate the resulting deformation. A novel superelastic shape memory alloy (SMA) honeycomb damper (SHD) is proposed as a means to combine the large strain capacity of SMA and the geometrical nonlinear deformation of honeycomb structures. As a result, the large deformation capacity of the novel damper satisfies the requirements for bridge restrainers. The proposed device consists of a superelastic shape memory alloy (SMA) honeycomb structure, which enables a self-centering capability, along with steel plates that serve to prevent the buckling of the SMA honeycomb. An examination of the SHD was undertaken initially from theoretical perspectives. A multi-cell SHD specimen was subsequently manufactured and evaluated. Following this, numerical simulation analyses of the SHDs using a three-dimensional high-fidelity finite element model were employed to examine the experimental results. In the end, a technique for improving the SHD was suggested. The results indicate that the SHD is able to demonstrate superior self-centering capabilities and stable hysteretic responses when subjected to earthquakes.

Keywords