Biotechnology for Biofuels (Apr 2010)

Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process

  • Kurantz M,
  • Senske G,
  • Johnston DB,
  • Hicks KB,
  • Nghiem NP,
  • Li M,
  • Shetty J,
  • Konieczny-Janda G

DOI
https://doi.org/10.1186/1754-6834-3-8
Journal volume & issue
Vol. 3, no. 1
p. 8

Abstract

Read online

Abstract Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic) process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis) or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS) co-product had extremely low β-glucan (below 0.2%) making it suitable for use in both ruminant and mono-gastric animal feeds.