Head & Face Medicine (Jul 2010)

The impact of bisphosphonates on the osteoblast proliferation and Collagen gene expression <it>in vitro</it>

  • Ziebart Thomas,
  • Merkel Christina,
  • Yekta Sareh,
  • Koch Felix,
  • Smeets Ralf

DOI
https://doi.org/10.1186/1746-160X-6-12
Journal volume & issue
Vol. 6, no. 1
p. 12

Abstract

Read online

Abstract Background Bisphosphonates are widely used in the clinical treatment of bone diseases with increased bone resorption. In terms of side effects, they are known to be associated with osteonecrosis of the jaw (BONJ). The objective of this study was to evaluate the effect of bisphosphonates on osteoblast proliferation by cell count and gene expression analysis of cyclin D1 in vitro. Furthermore, the gene expression of the extracellular matrix protein collagen type I was evaluated. Nitrogen-containing and non-nitrogen-containing bisphosphonates have been compared on gene expression levels. Methods Human osteoblast obtained from hip bone were stimulated with zoledronate, ibandronate and clodronate at concentrations of 5 × 10-5M over the experimental periods of 1, 2, 5, 10 and 14 days. At each point in time, the cells were dissolved, the mRNA extracted, and the gene expression level of cyclin D1 and collagen type I were quantified by Real-Time RT-PCR. The gene expression was compared to an unstimulated osteoblast cell culture for control. Results The proliferation appeared to have been influenced only to a small degree by bisphosphonates. Zolendronate led to a lower cyclin D1 gene expression after 10 days. The collagen gene expression was enhanced by nitrogen containing bisphosphonates, decreased however after day 10. The non-nitrogen-containing bisphosphonate clodronate, however, did not significantly influence cyclin D1 and collagen gene expression. Conclusions The above data suggest a limited influence of bisphosphonates on osteoblast proliferation, except for zoledronate. The extracellular matrix production seems to be initially advanced and inhibited after 10 days. Interestingly, clodronate has little influence on osteoblast proliferation and extracellular matrix production in terms of cyclin D1 and collagen gene expression.