Materials Research Express (Jan 2021)
Molecular dynamics calculations of stability and phase transformation of TiV alloy under uniaxial tensile test
Abstract
In this paper, molecular dynamics (MD) simulation software LAMMPS is used to simulate the elastic properties and stability of Ti-V single-crystal alloys. The relationship between the elastic constant and the mechanical stability of Ti-V alloy with a body-centered cubic (BCC) structure is studied. The energy relationship between TiV alloys with hexagonal close-packed (HCP) structure and BCC structure are compared, respectively. The effects of temperature, crystal orientations, and V content on the mechanical properties of TiV alloys are calculated under uniaxial tensile test. The results show that both ultimate tensile strength and plasticity of the Ti-V alloy with BCC structure decrease with the increase of temperature and V content, due to the phase transition from the BCC structure to the face-centered cubic (FCC) structure. Finally, it is identified that the modes of the transformation from BCC structure to FCC structure during the tensile process are BCC(100)//FCC(110), BCC(010)//FCC(1 $\bar{1}$ 0).
Keywords