BMC Chemistry (May 2020)

Consumption of anthocyanin-rich beverages affects Nrf2 and Nrf2-dependent gene transcription in peripheral lymphocytes and DNA integrity of healthy volunteers

  • Isabel Anna Maria Groh,
  • Tamara Bakuradze,
  • Gudrun Pahlke,
  • Elke Richling,
  • Doris Marko

DOI
https://doi.org/10.1186/s13065-020-00690-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Recently, we demonstrated that the consumption of a bolus of bilberry extract modulates the transcription of Nrf2-regulated genes in peripheral blood lymphocytes (PBL) of healthy volunteers, accompanied by decreased DNA-damage. In the present study, we addressed the question whether consumption of consumer-relevant amounts of anthocyanin-rich beverages can achieve similar effects. The impact of three different anthocyanin-rich beverages on Nrf2-dependent gene transcription as well as and the status of DNA-damage in whole blood was investigated. After a polyphenol-reduced diet, five healthy male subjects consumed a bolus (700 mL) of respective test beverages with blood sampling up to 8 h after intake. All beverages affected the transcription of Nrf2, HO-1 and NQO-1, but showed different potencies and persistence of effects. Consumption of red fruit juice significantly reduced total DNA strand breaks (with formamidopyrimidine-DNA-glycosylase-(fpg) treatment) after 8 h in blood samples of the volunteers, suggesting antioxidant and DNA protective effects, albeit transcript levels of Nrf2-dependent genes had reached the basal state. The amount of basic DNA strand breaks (damage without oxidative DNA strand breaks) remained unchanged during the monitoring period. In contrast, a beverage prepared from grape skin extract significantly increased basic and total DNA strand breaks 2 h after intake, underlining the necessity of further investigations regarding composition, safety and consumer´s acceptance of respective products to exclude undesired adverse effects. Consumption of a bolus of anthocyanin-rich beverages affected Nrf2 and Nrf2-dependent gene transcription in human PBL and DNA integrity, which is indicative for systemic effects.

Keywords