Journal of Medical Physics (Jan 2008)
Studies on the time course of apparent diffusion coefficient and signal intensities on T2- and diffusion-weighted MR Imaging in acute cerebral ischemic stroke
Abstract
The time course of changes in apparent diffusion coefficient (ADC) and signal intensity on diffusion-weighted magnetic resonance imaging (DW MR) imaging in acute ischemic stroke is a very dynamic event. There is an initial reduction in ADCs with no change on T2-W imaging but signal intensity increase on T2-weighted takes place about 6-12 hours after onset of stroke. As necrosis begins to set in, there is a gradual reversal of ADC change, and around 3-10 days post-onset, ADC pseudonormalizes. Twenty-four patients of acute stroke underwent diffusion MR imaging in addition to conventional T1W, T2W, and Fluid Attenuated Inversion Recovery (FLAIR) sequence performed within 12 hours, at 30 days, and at 90 days. The mean signal intensity at b = 0 s/mm2 and at b = 1000 s/mm2 were significantly higher than control values for all time periods. The ratio of signal intensity at b = 0 (rSI b=0) significantly increased from 1.63 ± 0.20 in the acute stage to 2.19 ± 0.24 in the chronic stage ( P < 0.001). The ratio of signal intensity on DWI (r SIDWI) decreased from 2.54 ± 0.46 to 1.54 ± 0.22. The mean ADC in the lesion was found to be 41% lower than the mean ADC in the contralateral hemisphere .Linear regression analysis between rADC and log hours showed that pseudonormalization occurred at 6.61 days ( P < 0.001). We conclude that the above information could be useful in the management of very early stroke.