Buildings (Jan 2023)

Hysteresis Performance and Restoring-Force Model of Precast Concrete Ring-Lap Beam-Column Joints

  • Min Zhang,
  • Zhengrong Xue,
  • Yihu Chen,
  • Dan Lu,
  • Wen Qin,
  • Wei Yu

DOI
https://doi.org/10.3390/buildings13020286
Journal volume & issue
Vol. 13, no. 2
p. 286

Abstract

Read online

In order to study the restoring-force characteristics of precast concrete ring-lap beam-column joints, three precast concrete ring-lap beam-column joint specimens and one cast-in-place concrete beam-column joint specimen were designed and fabricated, and low-circumferential repeated loading tests were conducted. The results show that the bearing capacity of the ring-lap beam-column joint is higher than that of the cast-in-place beam-column joint, and with the increase in the lap length, the bearing capacity, ductility, and energy dissipation capacity of the ring-lap beam-column joint increase significantly, and the local damage is also mitigated. Based on the test results and the existing restoring-force model theory, a trifold restoring-force model is proposed for precast concrete ring-lap beam-column joints considering the effect of lap length. The proposed restoring-force model is consistent with the hysteresis curve of the assembled column, which indicates that the proposed restoring-force model can better reflect the influence of the lap length on the hysteresis characteristics, and can provide a reference for the structural elastic–plastic analysis and engineering application of the precast concrete ring-lap beam-column joint. The proposed restoring-force model can better reflect the influence of lap length on the hysteretic properties, which can provide a reference for the structural elastoplastic analysis and engineering application of this precast concrete ring-lap beam-column joint.

Keywords