International Journal of Forestry Research (Jan 2019)

Biomass and Volume Models Based on Stump Diameter for Assessing Degradation of Miombo Woodlands in Tanzania

  • Bernardol John Manyanda,
  • Wilson Ancelm Mugasha,
  • Emannuel F. Nzunda,
  • Rogers Ernest Malimbwi

DOI
https://doi.org/10.1155/2019/1876329
Journal volume & issue
Vol. 2019

Abstract

Read online

Models to estimate forest degradation in terms of removed volume and biomass from the extraction of wood fuel and logging using stump diameter (SD) are lacking. The common method of estimating removals is through estimating diameter at breast height (D) by applying equations relating measured D and SD. The estimated D is then used to estimate biomass and volume by means of allometric equations, which utilize D. Through this sequence of procedures, it is apparent that there is an accumulation of errors. This study developed equations for estimating volume, aboveground biomass (ABG), and belowground biomass (BGB) using SD in miombo woodlands of mainland Tanzania. Volume models were developed from 114 sample trees while AGB and BGB models were developed from 127 and 57 sample trees, respectively. Both site specific and regional models were developed. Over 70% of the variations in BGB, AGB, and volume were explained by SD. It was apparent that SD is inferior compared to measured D in explaining variation in volume and BGB but not AGB. However, the accuracy of BGB and volume estimates emanating directly from SD were far better than those obtained indirectly, i.e., volume or BGB estimates obtained from estimated D from SD, since the latter is affected by accumulation of regression equation errors. For improved accuracy of ABG, BGB, and volume estimates, we recommend the use of site specific models. However, for areas with no site specific models, application of regional models is recommended. The developed models will facilitate the addition of forest degradation as a REDD+ activity into the forthcoming FREL.