BMC Oral Health (Feb 2024)
Antibacterial biofilm efficacy of calcium hydroxide loaded on Gum Arabic nanocarrier: an in-vitro study
Abstract
Abstract Background An innovative intracanal medication formulation was introduced in the current study to improve the calcium hydroxide (Ca(OH)2) therapeutic capability against resistant Enterococcus faecalis (E. faecalis) biofilm. This in-vitro study aimed to prepare, characterize, and evaluate the antibacterial efficiency of Ca(OH)2 loaded on Gum Arabic (GA) nanocarrier (Ca(OH)2-GA NPs) and to compare this efficiency with conventional Ca(OH)2, Ca(OH)2 nanoparticles (NPs), GA, and GA NPs. Materials and methods The prepared nanoparticle formulations for the tested medications were characterized using Transmission Electron Microscope (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). 141 human mandibular premolars were selected, and their root canals were prepared. Twenty-one roots were then sectioned into 42 tooth slices. All prepared root canals (n = 120) and teeth slices (n = 42) were divided into six groups according to the intracanal medication used. E. faecalis was inoculated in the samples for 21 days to form biofilms, and then the corresponding medications were applied for 7 days. After medication application, the residual E. faecalis bacteria were assessed using CFU, Q-PCR, and SEM. Additionally, the effect of Ca(OH)2-GA NPs on E. faecalis biofilm genes (agg, ace, and efaA) was investigated using RT-PCR. Data were statistically analyzed at a 0.05 level of significance. Results The synthesis of NPs was confirmed using TEM. The results of the FTIR proved that the Ca(OH)2 was successfully encapsulated in the GA NPs. Ca(OH)2-GA NPs caused a significant reduction in the E. faecalis biofilm gene expression when compared to the control (p < 0.001). There were significant differences in the E. faecalis CFU mean count and CT mean values between the tested groups (p < 0.001) except between the Ca(OH)2 and GA CFU mean count. Ca(OH)2-GA NPs showed the least statistical E. faecalis mean count among other groups. SEM observation showed that E. faecalis biofilm was diminished in all treatment groups, especially in the Ca(OH)2-GA NPS group when compared to the control group. Conclusions Ca(OH)2 and GA nanoparticles demonstrate superior anti-E. faecalis activity when compared to their conventional counterparts. Ca(OH)2-GA NPs showed the best antibacterial efficacy in treating E. faecalis biofilm. The tested NP formulations could be considered as promising intracanal medications.
Keywords