Geochronology (Dec 2021)

Deconvolution of fission-track length distributions and its application to dating and separating pre- and post-depositional components

  • P. K. Jensen,
  • K. Hansen

DOI
https://doi.org/10.5194/gchron-3-561-2021
Journal volume & issue
Vol. 3
pp. 561 – 575

Abstract

Read online

To enable the separation of pre- and postdepositional components of the length distribution of (partially annealed) horizontal confined fission tracks, the length distribution is corrected by deconvolution. Probabilistic least-squares inversion corrects natural track length histograms for observational biases, considering the variance in data, modelization, and prior information. The corrected histogram is validated by its variance–covariance matrix. It is considered that horizontal track data can exist with or without measurements of angles to the c axis. In the latter case, 3D histograms are introduced as an alternative to histograms of c-axis-projected track lengths. Thermal history modelling of samples is not necessary for the calculation of track age distributions of corrected tracks. In an example, the age equations are applied to apatites with predepositional (inherited) tracks in order to extract the postdepositional track length histogram. Fission tracks generated before deposition in detrital apatite crystals are mixed with post-depositional tracks. This complicates the calculation of the post-sedimentary thermal history, as the grains have experienced different thermal histories prior to deposition. Thereafter, the grains share a common thermal history. Thus, the extracted post-depositional histogram without inherited tracks may be used for thermal history calculation.