International Journal of Photoenergy (Jan 2014)
Potential Use of C60/2-Hydroxypropyl-β-cyclodextrin Nanoparticles as a New Photosensitizer in the Treatment of Cancer
Abstract
The photosensitizing ability of C60/2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) nanoparticles under visible light irradiation was studied by electron spin resonance (ESR) and phototoxicity on cancer cells. In addition, the photoinduced antitumor effect to the tumor-bearing mice was evaluated. C60 nanoparticles were prepared by grinding a mixture of HP-β-CyD. The resulting C60/HP-β-CyD nanoparticles were highly-sensitive to visible light and generated higher levels of 1O2 than protoporphyrin IX (PpIX). C60/HP-β-CyD reduced the viability of cancer cells (HeLa cells and A549 cells) in response to irradiation by visible light in a dose-dependent manner. The IC50 values of the C60/HP-β-CyD nanoparticles was 10 μM for HeLa cells and 60 μM for A549 cells at an irradiation level of 35 mW/cm2. The photodynamic effect of C60/HP-β-CyD nanoparticles on the in vivo growth of mouse sarcoma S-180 cells was evaluated after intratumor injection. The outcome of PDT by C60/HP-β-CyD was directly dependent on the dose of irradiated light. Treatment with C60/HP-β-CyD nanoparticles at a C60 dose of 2.0 mg/kg under visible light irradiation at 350 mW/cm2 (63 J/cm2) markedly suppressed tumor growth, whereas that at 30 J/cm2 was less effective. These findings suggest that C60/HP-β-CyD nanoparticles represent a promising candidate for use in cancer treatment by PDT.